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VOLATILITY ESTIMATION UNDER ENDOGENOUS
MICROSTRUCTURE NOISE

By Christian Y. Robert and Mathieu Rosenbaum

CREST-ENSAE Paris Tech,
CMAP-École Polytechnique Paris

This paper considers practically appealing procedures for esti-
mating intraday volatility measures of financial assets. The underly-
ing microstructure model accommodates the inherent properties of
ultra high frequency data with the assumption of continuous efficient
price processes. In this model, the microstructure noise is endoge-
nous but does not only depend on the prices. Using the (observed)
last traded prices of the assets, we develop a new approach that en-
ables to approximate the values of the efficient prices at some random
times. Based on these approximated values, we build an estimator of
the integrated volatility and give its asymptotic theory. We also give
a consistent estimator of the integrated co-volatility when two assets
(asynchronous by construction of the model) are observed.

1. Introduction. In the recent years, a large number of papers has been devoted to the
problem of estimating the integrated volatility of a financial asset from high frequency data.
Since the dynamics of these data largely differ from the semi-martingale type behavior of
low frequency data, their näıve use leads to a biased behavior of quadratic variation-type
estimators. Consequently, it is now usual to view intraday market prices as noisy observations
of the efficient price and to build estimators in this so called microstructure noise context.

Different types of microstructure noise models are encountered in the financial econometrics
literature. The more usual type is the case of an additive noise that is independent of the
efficient price ([3], [4], [5], [15], [16], [34], [36]). An additive endogenous component is also
considered in [6] through a linear combination of past returns and in [23] through the Brownian
motion driving the price. A major drawback of these approaches is that they do not allow
for prices discreteness. More convincing types of microstructure noise are given by the cases
of a contamination of the efficient price through a Markov kernel ([22], [26]) and a rounding
error ([9], [25], [31]). The microstructure noise is respectively partially and fully endogenous
in these models.

When estimating the integrated volatility, all the preceding models, even when allowing for
prices discreteness, are not completely satisfying in practice since they are treated through
a deterministic exogenous sampling (or some stochastic sampling through a regular time-
change, which in fact can be boiled down in the deterministic case, see [6]) and so do not
take into account the information contained in the intertrade durations. Hence, their use in
practice lead to the following question: what is the right sampling frequency to use : 1 second,
1 minute, 5 minutes ? Moreover, one may ask about the right price to use : bid price, mid-
quote price, last traded price ? Different answers to these questions often lead to significantly
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2 C.Y. ROBERT AND M. ROSENBAUM

different results in volatility measures, see [19].
The problem of estimating the integrated co-volatility under microstructure noise has been

much less studied. Indeed, in that case, beyond microstructure noise, one also faces the issue of
the asynchronicity of the data. Both lead to a highly biased behavior of näıve high frequency
co-volatility measures, see [20], [32], [35]. The asynchronicity has been first treated in [20].
The additional presence of microstructure noise is considered in [7], [32] and [35], in additive
settings where the two preceding questions are still in force.

In this paper, we introduce a model with endogenous, structural, microstructure noise that
enables to get rid of the problem of the choice of a price and a sampling frequency. This
model for the last traded price, called model with uncertainty zones, allows for transaction
price increments of one or several ticks, the size of the price jumps being determined by
explanatory variables involving for example the order book. Moreover, as shown in details in
[29], it enables to reproduce the main stylized facts of returns, durations and microstructure
noise. The main idea behind this model is that, if a transaction occurs at some value on
the tick grid and leads to a change in the transaction price, then the efficient price has been
quite close to this value shortly before the transaction. So, we call uncertainty zones the bands
around the mid-tick grid where the efficient price is too far from the tick grid to trigger a price
change. In our setting, the width of these uncertainty zones quantifies the aversion to price
changes of the market participants. Finally, note that this model can be easily interpreted by
practitioners and its results on a large amount of real data are quite promising, see [29].

Our estimation procedure for the integrated volatility is based on a tick time sampling.
It consists in deriving estimated values of the efficient price at some random times and then
computing the realized volatility over these values. Our estimator is consistent and we provide
its asymptotic theory as the tick size goes to zero. We also give a consistent estimator of
the integrated co-volatility in the case where two assets are observed. One of the technical
difficulties of our approach is that we deal with endogenous times and so usual limit theorems
do not apply.

The paper is organized as follows. We describe and discuss the model in Section 2. The
estimators and associated theorems are given in Section 3. Section 4 contains the proofs and
the results of a simulation study are given in Section 5. We conclude in Section 6.

2. Model with uncertainty zones.

2.1. Description of the model. We build in this section a model on the last traded price. In
an idealistic framework, where the efficient price would be observed, market participants would
trade when the efficient price crosses the tick grid. In practice, there is some uncertainty about
the efficient price value so that market participants are reluctant to price changes. Hence, there
is a modification of the transaction price only if some buyers and sellers are truly convinced
that the efficient price is sufficiently far from the last traded price. We introduce a parameter
η that quantifies the aversion to price changes (with respect to the tick size) of the market
participants and propose a model that takes into account this aversion.

Let (Xt)t≥0 denote the efficient price of the asset. On a rich enough filtered probability
space (Ω, (Ft)t≥0,P), we assume that the logarithm of the efficient price (Yt)t≥0 is a Ft-
adapted continuous semi-martingale of the form

Yt = logXt = logX0 +
∫ t

0
audu+

∫ t

0
σu−dWu,
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VOLATILITY ESTIMATION UNDER ENDOGENOUS MICROSTRUCTURE NOISE 3

where (Wt)t≥0 is a standard F-Brownian motion, (at)t≥0 is a progressively measurable pro-
cess with locally bounded sample paths and (σt)t≥0 is a positive Ft-adapted process with
càdlàg sample paths. Note that by taking the predictable projection of a, which is still locally
bounded, one can also consider the usual assumption of a predictable drift. However, this is
not useful in our continuous efficient price setting.

The tick grid where transaction prices are bound to lie on is defined as {kα; k ∈ N}, with α
the tick size. For k ∈ N and 0 < η < 1, we define the zone Uk by Uk = [0,∞)× (dk, uk) with

dk = (k + 1/2− η)α and uk = (k + 1/2 + η)α.

Thus, Uk is a band around the mid-tick grid value (k + 1/2)α, see Figure 1. Note that when
η is smaller than 1/2, there is no overlap between the zones.

Let t0 = 0 and P0 be the opening price. For i ≥ 1, denote by ti the i-th time where a change
in the transaction price of the asset is observed, by Pti its associated transaction price, and
define the last traded price (Pt)t≥0 as the càdlàg piecewise constant process built from the
(ti, Pti)i≥0.

We assume that the transaction price may jump from price k′α to price kα with k′ 6= k
only once the efficient price exited down the zone Uk or exited up the zone Uk−1 and provided
that market conditions are favorable for a transaction to occur. In a way, the transaction
price only changes when the efficient price is close from a new multiple value of α and market
participants want to trade. The zones (Uk)k∈N represent bands inside of which the efficient
price can not trigger a change of the transaction price. Consequently, they will be referred to
as the uncertainty zones.

More specifically, let us precise the construction of the sequence (τi)i≥0 of the exit times
from the uncertainty zones which will lead to a change in the transaction price. Let τ0 = 0 and
assume without loss of generality that τ1 is the exit time of (Xt)t≥0 from the set (dk0−1, uk0)

where k0 = X
(α)
0 , with X(α)

0 the value of X0 rounded to the nearest multiple of α. We introduce
a sequence (Li)i≥1 of Fτi-measurable discrete random variables which represent the absolute
value in number of ticks of the price jump between the i-th and the (i + 1)-th transaction
leading to a price change. As explained later, the distribution of this variable will depend on
the value of some market quantities at time τi. Then define recursively τi+1 as the exit time
of (Xt)t>τi from the set (dki−Li , uki+Li−1), where ki = X

(α)
τi , that is

(1) τi+1 = inf
{
t : t > τi, Xt = X(α)

τi − α(Li −
1
2

+ η) or Xt = X(α)
τi + α(Li −

1
2

+ η)
}
.

In particular, if Xτi = dj for some j ∈ N, τi+1 is the exit time of (Xt)t>τi from the set
(dj−Li , uj+Li−1), and if Xτi = uj for some j ∈ N, τi+1 is the exit time of (Xt)t>τi from the set
(dj−Li+1, uj+Li), see Figure 1.

Finally, let t0 = 0 and P0 = X
(α)
0 . We assume that the couples (ti, Pti) satisfy for i ≥ 1

τi ≤ ti < τi+1 and Pti = X(α)
τi .

It means that between τi and τi+1, at least one transaction has occurred at price Pti and
ti is the time of the first of these transactions. The difference ti − τi can be viewed as the
delay caused by the reaction times of the market participants and/or by the trading process.

January 20, 2009



4 C.Y. ROBERT AND M. ROSENBAUM

Note also that αLi is the absolute value of the price jump between the i-th and the (i+ 1)-th
transactions with price change and that

(2) Pti = Xτi + sign(Xτi −Xτi−1)(1/2− η)α = Xτi + sign(Pti − Pti−1)(1/2− η)α.

Hence, if one knows (estimates) η, one can recover (estimate) Xτi from Pti−1 and Pti . Figure
1 displays an example of the different trajectories in a case where 0 < η < 1/2.

The measurement error at transaction time ti is given by

(3) Pti −Xti = −(Xti −Xτi) + sign(Xτi −Xτi−1)(1/2− η)α.

This error has to be compared with the simple linear models of endogeneity for exogenous
sampling introduced in [23] or in Section 5.5 of [6]. Note that it depends on the price and the
τi in an intricate way since the τi are stopping times with respect to a bigger filtration than
those generated by the price.

We eventually precise the conditional distribution of the jump sizes in ticks between con-
secutive transaction prices. We assume that the jump sizes are bounded (what is empirically
not restrictive) and denote by m their maximal value. For k = 1, ...,m and t > 0, let

N
(a)
α,t,k =

∑
τi≤t

I{|Xτi−Xτi−1 |=α(k−1+2η)} and N
(c)
α,t,k =

∑
τi≤t

I{|Xτi−Xτi−1 |=αk}

be respectively the number of alternations and continuations of k ticks. An alternation (con-
tinuation) of k ticks is a jump of k ticks whose direction is opposite to (the same as) that of
the preceding jump, see Figure 1. Remark that for small (large) values of η, one will mainly
observe alternations (continuations). Let (χt)t≥0 be a continuous M -dimensional Ft-adapted
process. We define the filtration E as the complete right-continuous filtration generated by
(Xt, χt, N

(a)
α,t,k, N

(c)
α,t,k, k = 1, . . . ,m). We assume that conditional on Eτi , Li is a discrete ran-

dom variable on [[1,m]] satisfying

(4) PEτi [Li = k] = pk(χτi), 1 ≤ k ≤ m,

for some unknown positive differentiable with bounded derivative functions pk. In practice,
χt may represent quantities related for example to the traded volume, the bid-ask spread, or
the bid and ask depths. For the applications, specific form for the pk are given in [29].

2.2. Discussion.

• The model with uncertainty zones accommodates the inherent properties of prices, dura-
tions and microstructure noise (see [10], [17], [19] for the different features of these quantities)
together with a semi-martingale efficient price. In particular, this model allows for discrete
prices, a bid-ask bounce and an inverse relation between durations and volatility. Moreover
the usual behaviors of the autocorrelograms and cross correlograms of returns and microstruc-
ture noise, both in calendar and tick time, are reproduced. Eventually, it leads to jumps in
the price of several ticks, the size of the jumps being determined by explanatory variables
involving for example the order book. Mostly, the model with uncertainty zones is clearly
validated on real data. These results are studied in details in [29].
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Fig 1. Example of trajectories of the latent price and of the observed price. The red crosses denote the exit
points associated to the τi.

• Some restrictive cases of our model are mentioned in the literature. The case η = 0,
Li = 1, ti = τi for all i corresponds to the pure rounding case, which is not realistic because of
the infinite number of oscillations of the price. The case η = 1/2, Li = 1, ti = τi corresponds
to the model studied in [11]. Note that in general, this specification of η and of the Li does not
seem to be convenient for real data, see [29]. The case η < 1/2, Li = 1, ti = τi is mentioned
in [24]. Note also that a discrete version of this model was introduced in [30].
• For expository purpose, we impose the not really restrictive assumption that the upward

and downward barriers to reach are only defined through the Li, see Figure 1. However,
a model with some variables L+

i and L−i for the upward and downward barriers could be
considered.
• As explained in the previous section, η quantifies the aversion to price changes (with

respect to the tick size) of the market participants. Indeed, η controls the width of the un-
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6 C.Y. ROBERT AND M. ROSENBAUM

certainty zones. In tick unit, the larger η, the farther from the last traded price the efficient
price has to be so that a price change occurs. In some sense, a small η (< 1/2) means that
the tick size appears too large to the market participants and a large η means that the tick
size appears too small.
• There are several other ways to interpret the parameter η, notably from a practitioner’s

perspective. For example, one can think that in the very high frequencies, the order book can
not “follow” the efficient price and is reluctant to price changes. This reluctancy could be
characterized by η. Another possibility is to view η as a measure of the usual prices depth
explored by the transaction volumes.
• It is shown in [29] that the parameter η remains remarkably stable in time for a large

number of assets. Moreover, all types of configuration between the tick size and the orders of
magnitude of the volatility and η can be found on the market.
• Although the majority of the transactions does not lead to a price change, see for example

[18], [27], we only model transactions with price change and consider a tick time sampling
scheme (ti, Pti)i≥0. In [18], an empirical and theoretical study shows that sampling in tick
time is generally preferable to sampling in transaction time or to the common practice of
sampling in calendar time when estimating the integrated volatility.
•We consider a structural model for the microstructure noise and so, from the efficient price

process, we directly model transaction prices. Moreover, if one can estimate the parameter η,
up to an estimation error, one can retrieve the true value of the latent price at time τi, see
Equation (2). This is very convenient in the purpose of building statistical procedures, see
Section 3.

3. Estimation procedures. For a fixed objective time T , our goal is to estimate the
integrated volatility of the asset and the integrated co-volatility between two assets over [0, t],
t ≤ T . In our model, we work with random observation times, whose structure depends on
the efficient price. This context differs from those using deterministic sampling schemes and
lead to new technical issues, see in particular [1], [2] and [14]. Our asymptotics is to consider
that the tick size is going to zero. Even if the tick size is fixed on the markets, it is just a
reasonable way to make the number of observations go to infinity. This kind of asymptotics
is also used in [9], [11] or [31].

3.1. Estimation of the integrated volatility. The integrated volatility of (Xt) on [0, t], t ≤ T ,
is defined by

IVt =
∫ t

0
σ2
sds.

Note that, contrary to some authors, we do not focus on the quadratic variation of (Xt)t≥0

but of (logXt)t≥0. Although the two quantities are close (up to a price scale factor), according
to the mathematical finance theory, the second one is probably more relevant. Moreover, its
inference is more intricate since price discreteness happens on the original scale and not on
the log scale.

In our framework, a natural idea for estimating this quantity is to consider the following
realized volatility

RVα,t =
∑
τi≤t

(Xτi −Xτi−1

Xτi−1

)2
.

January 20, 2009



VOLATILITY ESTIMATION UNDER ENDOGENOUS MICROSTRUCTURE NOISE 7

We use this form of the realized volatility for technical convenience. It is as natural as the
logarithmic form since our model is not based on the log price. The Xτi are not observed but
can be obtained through Equation (2) up to the knowledge of η. So, the first step consists in
estimating the parameter η and the second step in replacing η by its estimate to approach
RVα,t.

We define the estimator of η by

η̂α,t =
(
0 ∨

m∑
k=1

λα,t,kuα,t,k
)
∧ 1,

with

λα,t,k =
N

(a)
α,t,k +N

(c)
α,t,k∑m

j=1

[
N

(a)
α,t,j +N

(c)
α,t,j

] and uα,t,k =
1
2
(
k(
N

(c)
α,t,k

N
(a)
α,t,k

− 1) + 1
)
.

The idea behind this estimator is that the uα,t,k are consistent estimators of η for each k. The
λα,t,k are then natural weighting factors. Note in particular that N (c)

α,t,1/N
(a)
α,t,1 is an estimator of

2η. Consequently, if η is smaller than 1/2, we may expect more alternations than continuations
in the last traded price and conversely.

Next we define our estimator of the integrated volatility by

R̂V α,t =
∑
ti≤t

(X̂t
τi − X̂

t
τi−1

X̂t
τi−1

)2
,

where for ti < t,

X̂t
τi = Pti − α(

1
2
− η̂α,t)sign(Pti − Pti−1).

The key tool to establish the consistency of our estimator of η is the Dambis-Schwarz
theorem. Indeed, it allows us to transform our process into a Brownian motion in a modified
time in which the distributions of the exit times from the uncertainty zones are explicit.
Then we use classical results on the quadratic variation over stopping times, see for example
Theorem I.4.47 in [21]. In the following,

u.c.p.→ denotes uniform convergence in probability over
compact sets included in [0, T ]. Abusing notation slightly, we say that the family of processes
Zα converges uniformly in probability towards Z as α tends to zero if for any sequence αn
tending to zero, Zαn

u.c.p.→ Z. We have the following result.

Theorem 1. As α tends to 0,

η̂α,t
u.c.p.→ η and R̂V α,t

u.c.p.→
∫ t

0
σ2
sds.

For our next theorem, we work under the following assumption.

Assumption 1. The process χ is a Ft-adapted continuous Ito semi-martingale with pro-
gressively measurable with locally bounded sample paths and positive Ft-adapted volatility ma-
trix whose elements have càdlàg sample paths.

January 20, 2009



8 C.Y. ROBERT AND M. ROSENBAUM

Let us now give the definition of stable convergence in law. Let Zα be a family of random
variables (taking their values in the space of càdlàg functions endowed with the Skorokhod
topology J1). Let αn be a deterministic sequence tending to zero as n tends to infinity and I be
a sub-σ-field of F . We say that Zαn converges I-stably to Z as αn tends to zero (Zαn I−Ls→ Z) if
for every I-measurable bounded real random variable V , (V,Zαn) converges in law to (V,Z) as
n tends to infinity. This is a slightly stronger mode of convergence than the weak convergence,
see [21] for details and equivalent definitions. Finally, we say that Zα converges I-stably to
Z as α tends to zero if for any sequence αn tending to zero, Zαn I−Ls→ Z.

Next we introduce the following notation: ∇1 and ∇2 are two (2m + 1) valued vectors
defined by ∇1,1 = 1, ∇1,i = 0 for i = 2, . . . , 2m+ 1, ∇2,1 = 0 and for i = 1, . . . ,m,

∇2,2i = i+ η − 1/2, ∇2,2i+1 = −i−1(i+ η − 1/2)(i+ 2η − 1).

The processes (ft)t≥0 and (µt)t≥0 are defined by

ft =
∫ t

0
ϕ(χu)σ2

uX
2
udu, µt =

∫ t

0

m∑
k=1

2k(k − 1 + 2η)
2k − 1 + 2η

pk(χu)ϕ(χu)σ2
udu,

with

ϕ(χu) = (
m∑
j=1

pj(χu)j(j − 1 + 2η)
)−1

.

We are now able to state our limit theorem. Note that the observation times are random,
endogenous. So, usual theorems for deterministic or exogenous sampling can not be applied.
The key idea for the proof is to work in a modified time in which the observation times are
equidistant and to use stability properties of the convergence in law in the Skorohod space.

Let D[0, T ] denote the space of càdlàg functions on [0, T ] and > the transpose operator. We
have the following result.

Theorem 2. Let I be the filtration generated by the processes X and χ. Under Assumption
1, as α tends to 0, we have

α−1(R̂V α,t −
∫ t

0
σ2
sds) I−Ls→ (∇>1 +

µt
ft
∇>2 )

∫ t

0
bfsdWfs ,

in D[0, T ], where W is a (2m + 1) Brownian motion which is defined on an extension of the
filtered probability space (Ω, (Ft)t≥0,P) and is independent of all the preceding quantities and
bs is a (2m+ 1)× (2m+ 1) matrix defined in Lemma 14.

Note that the assumptions on the efficient price are very weak. In particular, σu is not
necessarily an Ito semi-martingale as in [6] or [22].

3.2. Estimation of the integrated co-volatility. We now turn to the problem of estimating
the integrated co-volatility when two assets are observed. In our context, one can not use
the classical realized covariation estimator for two reasons: the asynchronicity of the data
and the presence of microstructure noise. The problem of the asynchronicity of the data has
to be taken with great care since intuitive ideas such as the previous tick interpolation may
lead to a systematic bias called Epps effect, see [20] and [35] for details. This issue has been
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treated in [20] in the case when the correlation coefficient and the volatility functions are
deterministic and when the transaction times are independent of the price. Nevertheless, the
proposed estimator seems in general not robust to microstructure noise, see [32]. We show in
this paper that a modified version of the Hayashi-Yoshida estimator, which uses the estimated
values of the efficient price given by Equation (2), is consistent.

More precisely we consider a Ft-adapted bidimensional continuous Ito semi-martingale
(X(1)

t , X
(2)
t ) such that for j = 1, 2

Y
(j)
t = logX(j)

t = logX(j)
0 +

∫ t

0
a(j)
u du+

∫ t

0
σ

(j)
u−dW (j)

u

and
〈W (1),W (2)〉t =

∫ t

0
ρsds,

where ρs is an adapted process with càdlàg sample paths such that for all s, −1 < ρs < 1.
We impose the same assumptions on a(j) and σ(j) as in Section 2.1. The quantities α(j), η(j),
L

(j)
i , τ (j)

i , t(j)i and P
(j)

t
(j)
i

are also defined in the same way as in Section 2.1.

The usual Hayashi-Yoshida covariation estimator is given by

(5) HYt =
∑
t
(1)
i1
≤t

∑
t
(2)
i2
≤t

(
log(P (1)

t
(1)
i1

)−log(P (1)

t
(1)
i1−1

)
)(

log(P (2)

t
(2)
i2

)−log(P (2)

t
(2)
i2−1

)
)
I
[t

(1)
i1−1,t

(1)
i1

]∩[t
(2)
i2−1,t

(2)
i2

] 6=�.

We build our modified estimator the following way. First we consider new sequences of stopping
times (λ(1)

i )i≥0 and (λ(2)
i )i≥0 which limit the issue of asynchronicity. Then we use the estimated

values of the efficient price instead of the observed price. We define our new sequences by
λ

(1)
0 = 0, λ(2)

0 = 0 and for i ≥ 0, if τ (1)
1 > τ

(2)
1 ,

λ
(1)
i+1 = min

{
τ

(1)
j : τ (1)

j > λ
(2)
i+1

}
, λ

(2)
i+1 = min

{
τ

(2)
j : τ (2)

j ≥ λ(1)
i

}
and if τ (1)

1 ≤ τ (2)
1 ,

λ
(1)
i+1 = min

{
τ

(1)
j : τ (1)

j ≥ λ(2)
i

}
, λ

(2)
i+1 = min

{
τ

(2)
j : τ (2)

j > λ
(1)
i+1

}
.

Note that if τ (1)
1 > τ

(2)
1 , then λ(2)

1 < λ
(1)
1 ≤ λ(2)

2 < λ
(1)
2 . . . ≤ λ(2)

j < λ
(1)
j . We denote by l(j)i the

value of the time t(j). associated to λ(j)
i . Finally, our estimator is defined by

R̂CV t =
∑
l
(1)
i1
≤t

∑
l
(2)
i2
≤t

(
log(X̂(1)

λ
(1)
i1

)− log(X̂(1)

λ
(1)
i1−1

)
)(

log(X̂(2)

λ
(2)
i2

)− log(X̂(2)

λ
(2)
i2−1

)
)
I
[l

(1)
i1−1,l

(1)
i1

]∩[l
(2)
i2−1,l

(2)
i2

]6=�.

To establish our result, we will require the following assumption.

Assumption 2. For all k and m, the rank of t(m)
k among the set of all the t(1)

i and t(2)
j is

the same as the rank of τ (m)
k among the set of all the τ (1)

i and τ (2)
j .

Remark that under Assumption 2, I
[l

(1)
i1−1,l

(1)
i1

]∩[l
(2)
i2−1,l

(2)
i2

]6=� is equal to I
[λ

(1)
i1−1,λ

(1)
i1

]∩[λ
(2)
i2−1,λ

(2)
i2

]6=�.

We have the following theorem.
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10 C.Y. ROBERT AND M. ROSENBAUM

Theorem 3. Assume that α(2) = cα(1) with c > 0. Under Assumption 2, as α(1) tends to
zero, we have

R̂CV t
u.c.p.→

∫ t

0
ρsσ

(1)
s σ(2)

s ds.

Thus, the problem of estimating the integrated co-volatility of two assets is another example
which shows that our method consisting in estimating the values of the efficient price is
very convenient to adapt classical statistical procedures to the microstructure noise context.
Remark that a limit theorem is probably hard to obtain through our techniques because it
would require a time change adapted to both assets.

4. Proofs. In all the proofs, c denotes a positive constant that may vary from line to line
and (αn)n≥0 is a sequence tending to zero. So, we write τi,n for τi, ti,n for ti and Li,n for Li. We
define En as the complete right-continuous filtration generated by (Xt, χt, N

(a)
αn,t,k

, N
(c)
αn,t,k

, k =
1, . . . ,m). Moreover, without loss of generality, we consider that the semi-martingale χ is a
one-dimensional process of the form

χt = χ0 +
∫ t

0
aχudu+

∫ t

0
σχu−dŴu, for t ≤ T,

with Ŵ a Brownian motion on (Ω,F ,P) and we set χt = χT for t > T .

4.1. Preliminary remarks. We introduce in this section some tools we use throughout the
proofs.

A convenient construction of the Li,n. We write F = F1⊗F2. The processes X and χ are
measurable with respect to F1 and F2 is the filtration generated by a Brownian motion W ′,
independent of F1. Let Φ denote the cumulative distribution function of a standard Gaussian
random variable. We define

gt,n = sup{τj,n : τj,n < t},

L′t =
m∑
k=1

kI
{
Φ(
W ′t −W ′gt,n√

t− gt,n
) ∈

[ k−1∑
j=1

pj(χt),
k∑
j=1

pj(χt)
)}

and Li,n = L′τi,n , with the usual convention
0∑
j=1

pj(χt) = 0. So defined, for k = 1, . . . ,m,

we have PEnτi,n [Lτi,n = k] = pk(χτi,n). This construction is particularly convenient for the
localization procedure and change of probability that we now explain.

Localization and change of probability. From the assumptions of Section 2.1, there exist
an increasing sequence of stopping times Tq and a real sequence Kq > 0 such that Tq

a.s.→ T as
q tends to infinity and for 0 ≤ t ≤ Tq,

|Yt|+ |χt|+ |σt−|+ |at|+ |σ−1
t− |+ |σ

χ
t−|+ |a

χ
t | ≤ Kq.

For q > 0, let (Y (q)
t )t≥0 and (χ(q)

t )t≥0 be defined by Y (q)
0 = y0, χ(q)

0 = χ0 and

dY (q)
t = a

(q)
t dt+ σ

(q)
t− dWt,
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dχ(q)
t = (aχt )(q)dt+ (σχt−)(q)dŴt,

with a
(q)
t = at∧Tq , (aχt )(q) = aχt∧Tq , σ

(q)
t = σt, (σχt )(q) = σχt if t < Tq and σ

(q)
t = σTq−,

(σχt )(q) = σχTq− if t ≥ Tq. We have that Y (q)
t (resp. χ(q)

t ) coincides with Yt (resp. χt) on [0, Tq].
Now consider a twice differentiable real function Φq on R such that for x ∈ [−Kq,Kq],

Φq(x) = x and for all |x| ≥ Kq, |Φq(x)| ≤ c1, |Φ′q(x)|+ |Φ′′q (x)| ≤ c2 and |Φ′′q (x)/Φ
′
q(x)| ≤ c3,

where c1, c2 and c3 are positive constants. Let Ỹ (q)
t = Φq(Y

(q)
t ). As soon as y0 ∈ [−Kq,Kq],

Ỹ
(q)
0 = y0 and by Ito’s formula

dỸ (q)
t = ã

(q)
t dt+ σ̃

(q)
t− dWt,

where
ã

(q)
t = Φ

′
q(Y

(q)
t )a(q)

t + Φ
′′
q (Y (q)

t )(σ(q)
t− )2/2 and σ̃

(q)
t = Φ

′
q(Y

(q)
t )σ(q)

t .

Again, we have that Ỹ (q)
t coincides with Yt on [0, Tq]. Define

W
(q)
t = Wt +

∫ t

0

(ã(q)
s + (σ̃(q)

s−)2/2)

σ̃
(q)
s−

ds.

In this setting, we easily see that Novikov’s criterion holds and so, applying Girsanov’s the-
orem, (W (q)

t )t∈[0,T ] is a Brownian motion under a measure P(q) absolutely continuous with
respect to P on [0, T ]. Note that conditional on Enτi,n , the distribution of Li,n is not modified

when considering P(q) instead of P. Let X̃(q)
t = exp(Ỹ (q)

t ). We finally have

dX̃(q)
t = X̃

(q)
t σ̃

(q)
t− dW (q)

t .

Using the preceding construction and the fact that the convergence in probability and the
stable convergence in law are preserved by absolutely continuous change of probability, it is
no restriction for proving our theorems to consider from now that the following additional
assumption is granted.

Assumption 3. For all t ∈ [0, T ], at = −σ2
t−/2 and there exists a constant K > 0 such

that,
|Yt|+ |χt|+ |σt|+ |σχt |+ |a

χ
t | ≤ K.

Time change. In the following, it is sometimes useful to view our price process as a time-
changed Brownian motion. For that purpose, we introduce the process (Zt)t≥0 with infinite
bracket at infinity defined by

Zt = Xt∧T +
∫ t

0
Is>TdWs.

Let
T (s) = inf{t ≥ 0 : 〈Z〉t > s}.

By Dubins-Schwarz Theorem for continuous local martingales (see for example [28], Theorem
V.1.6), there exists a FT (s)-adapted Brownian motion (Bs)s≥0 such that for t ≥ 0,

B〈Z〉t + x0 = Zt.

Hence, for t ∈ [0, T ], B〈X〉t + x0 = Xt. From now, we redefine τi,n and Li,n in the same way
as in Equation (1) and Equation (4) replacing Xt by Zt. For simplicity, we keep from now the
notation X for Z. We set νi,n = 〈X〉τi,n and ∆νi,n = νi+1,n − νi,n.
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12 C.Y. ROBERT AND M. ROSENBAUM

4.2. Technical lemmas. We state in this section some lemmas that we widely use through-
out the proofs of our three theorems. The first technical lemma is an analogous of Lemma 9
in [13] in the case of random sampling.

Lemma 1. Let (Gt)t≥0 be a filtration, (νi,n) be an array of increasing sequences of stopping
times and (ξνi,n) an array of Gνi,n-mesurable random variables. Let ν be another stopping time
such that ν ≤ cν with cν a positive constant. Let Nn,t = sup{i : νi,n ≤ t}. Suppose that Nn,cν

is finite almost surely and that there exists a positive deterministic sequence vn such that the
sequence (vnNn,cν )n≥0 is tight. Moreover, assume that∑

νi,n≤ν
EGνi−1,n

[ξ2νi,n ] + sup
i≥1

EGνi−1,n
[ξ2νi,nIνi,n≤ν ] P→ 0

and
E[ sup
i≤Nn,cν+1

ξ2νi,n ]→ 0.

Then,
∑

νi,n≤ν
ξνi,n

P→ U is equivalent to
∑

νi,n≤ν
EGνi−1,n

[ξνi,n ] P→ U.

Proof. Let us consider the implication (→). Define

ξνi,n(t) = ξνi,nIνi,n≤t≤ν − EGνi−1,n
[ξνi,nIνi,n≤t≤ν ].

Since
∑
i≥1

ξνi,n(ν) is equal to

∑
νi,n≤ν

ξνi,n −
∑

νi,n≤ν
EGνi−1,n

[ξνi,n ] +
∑

νi,n≤ν
EGνi−1,n

[ξνi,n ]−
∑
i≥1

EGνi−1,n
[ξνi,nIνi,n≤ν ],

it is enough to show that∑
νi,n≤ν

EGνi−1,n
[ξνi,n ]−

∑
i≥1

EGνi−1,n
[ξνi,nIνi,n≤ν ] P→ 0

and ∑
i≥1

ξνi,n(ν) P→ 0.

The first term is equal to e1,n − e2,n with

e1,n =
∑

νi,n≤ν
EGνi−1,n

[ξνi,nIνi,n>ν ] and e2,n =
∑

νi,n>ν

EGνi−1,n
[ξνi,nIνi,n≤ν ].

Using that ∑
i≥1

Iνi−1,n>νEGνi−1,n
[ξνi,nIνi,n≤ν ] = 0,

we easily obtain
e2,n =

∑
i≥1

(Iνi,n>ν − Iνi−1,n>ν)EGνi−1,n
[ξνi,nIνi,n≤ν ].
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Hence
|e2,n| ≤ sup

i≥1
EGνi−1,n

[|ξνi,nIνi,n≤ν |] ≤
√

sup
i≥1

EGνi−1,n
[ξ2νi,nIνi,n≤ν |]

and so |e2,n|
P→ 0. Since ∑

i≥1

Iνi,n≤νEGνi−1,n
[ξνi,nIνi−1,n>ν ] = 0,

we get in the same way

e1,n =
∑
i≥1

Iνi,n≤νEGνi−1,n
[ξνi,n(Iνi,n>ν − Iνi−1,n>ν)].

Remarking that

E[|e1,n|] ≤ E
[∑
i≥1

|ξνi,n |Iνi−1,n≤ν≤νi,n

]
≤ E[ sup

i≤Nn,cν+1
|ξνi,n ] ≤

√
E[ sup
i≤Nn,cν+1

ξ2νi,n ],

we obtain |e1,n|
P→ 0. Let

e3,n(t) =
∑
i≥1

ξνi,n(t).

We now prove that e3,n(ν) P→ 0. Let ε > 0 and Mε > 0 be such that

sup
n

P[vnNn,cν > Mε] ≤ ε/3.

Let A > 0, we have

P[e3,n(ν)2 ≥ A] ≤ P[e3,n(ν)2I{vnNn,cν≤Mε} ≥ A] + ε/3.

Let Mε,n = bMε/vnc+ 1 and

e4,ε,n(t) =
Mε,n∑
i=1

ξνi,n(t).

For a given stopping time ρ ≤ ν, ξνi,n(ρ) is a martingale increment with respect to (Gνi,n). So,
we have

E[e4,ε,n(ρ)2] = E
[Mε,n∑
i=1

EGνi−1,n
[ξνi,n(ρ)2]

]
≤ E

[Mε,n∑
i=1

EGνi−1,n
[ξ2νi,nIνi,n≤ρ≤cν ]

]
.

This is also less than

EGνi−1,n
[ξ2νi,nIνi−1,n<ρ≤cν ]

]
+ E[ sup

i≤Nn,cν+1
ξ2νi,n ].

It follows that the process t→ e4,ε,n(t) is L-dominated by the predictable process

t→
Mε,n∑
i=1

EGνi−1,n
[ξ2νi,nIνi−1,n<t≤ν ] + E[ sup

i≤Nn,cν+1
ξ2νi,n ]
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on [0, ν], see for details I.3.29 in [21]. Now, since the preceding process is an increasing process
on [0, ν], we can apply Lenglart’s inequality and we obtain that for all η > 0 and A > 0,

P[e4,ε,n(ν)2 ≥ A] ≤ P[ sup
t∈[0,ν]

{e4,ε,n(t)2} ≥ A] ≤ η

A
+P
[
E[ sup
i≤Nn,cν+1

ξ2νi,n ]+
Mε,n∑
i=1

EGνi−1,n
[ξ2νi,nIνi,n≤ν ] ≥ η

]
.

Eventually, we get

P[e4,ε,n(ν)2 ≥ A] ≤ η

A
+ P

[
E[ sup
i≤Nn,cν+1

ξ2νi,n ] +
∑
i≥1

EGνi−1,n
[ξ2νi,nIνi,n≤ν ] ≥ η

]
.

By the same arguments as for the first term, we have∑
i≥1

EGνi−1,n
[ξ2νi,nIνi,n≤ν ]−

∑
νi,n≤ν

EGνi−1,n
[ξ2νi,n ] P→ 0.

Let us take η = Aε/3. For big enough n, the second term of the inequality is less than ε/3
and so the result follows. The other implication is proved exactly the same way.

We now give results on the first exit time of a Brownian motion (Bs)s≥0. Let α be a positive
constant, k a positive integer and 0 < η < 1. We write

ν(k) = min{s : Bs /∈ (−α(k − 1 + 2η), αk)}.

The following formulas can be found in [8].

Lemma 2. For u > 0,

E[e−uν(k)I{Bν(k)=αk}] =
sh(α(k − 1 + 2η)

√
2u)

sh(α(2k − 1 + 2η)
√

2u)
,

E[e−uν(k)I{Bν(k)=−α(k−1+2η)}] =
sh(αk

√
2u)

sh(α(2k − 1 + 2η)
√

2u)
.

Using the preceding lemma, tedious but straightforward computations lead to the following
corollary.

Corollary 1.

P [Bν(k) = αk] =
k − 1 + 2η
2k − 1 + 2η

, P [Bν(k) = −α(k − 1 + 2η)] =
k

2k − 1 + 2η

and

E[Bν(k) ] = 0, E[|Bν(k) |] = α
2k(k − 1 + 2η)

2k − 1 + 2η
, E[B2

ν(k)
] = α2k(k − 1 + 2η) = E[ν(k)],

January 20, 2009



VOLATILITY ESTIMATION UNDER ENDOGENOUS MICROSTRUCTURE NOISE 15

E[B4
ν(k)

] = α4k(k − 1 + 2η)(k2 − k + 2ηk + 4η2 − 4η + 1),

E[ν(k)I{Bν(k)=αk}] = α2k(k − 1 + 2η)(3k − 2 + 4η)
3(2k − 1 + 2η)

,

E[ν2
(k)I{Bν(k)=αk}] = α4k(k − 1 + 2η)(3k − 2 + 4η)(25k2 − 22k + 4 + 16η2 + 44kη − 16η)

90(2k − 1 + 2η)
,

E[ν(k)I{Bν(k)=−α(k−1+2η)}] = α2k(k − 1 + 2η)(3k − 1 + 2η)
3(2k − 1 + 2η)

,

E[ν2
(k)I{Bν(k)=−α(k−1+2η)}] = α4k(k − 1 + 2η)(3k − 1 + 2η)(25k2 − 28k + 7 + 28η2 + 56kη − 28η)

90(2k − 1 + 2η)
,

E[(ν(k))
2] = α4k(k − 1 + 2η)(5k2 − 5k + 1 + 4η2 + 10kη − 4η)

6
.

4.3. Proof of Theorem 1. We begin this section with the following result.

Lemma 3. We have

sup
{i:[τi,n,τi+1,n]⊂[0,T ]}

(τi+1,n − τi,n)→ 0, a.s.

Proof. For ω ∈ Ω, let S(ω) be defined by

S(ω) = lim sup sup
{i:[τi,n(ω),τi+1,n(ω)]⊂[0,T ]}

(
τi+1,n(ω)− τi,n(ω)

)
.

Assume that S is not almost surely equal to zero. Let Ω′ be such that P[Ω′] > 0 and such
that for all ω ∈ Ω′, t → Xt(ω) is (1/2 − γ) Hölder continuous for some γ, 0 < γ < 1/2 and
S(ω) > 0. For given ω ∈ Ω′, we define τ1

n(ω) and τ2
n(ω) the left and right bound of the first

interval [τi,n(ω), τi+1,n(ω)] such that

i = argmax
{j:[τj,n(ω),τj+1,n(ω)]⊂[0,T ]}

(
τj+1,n(ω)− τj,n(ω)

)
.

Thus
S(ω) = lim sup

(
τ2
n(ω)− τ1

n(ω)
)
.

Let
Mn(ω) = sup

{t∈[τ1
n(ω),τ2

n(ω)]}

(
Xt(ω)−Xτ1

n(ω)(ω)
)
.

We have Mn(ω) ≤ cαn and so Mn(ω) → 0. There exists an increasing function ψ and two
constants 0 ≤ c1 < c2 such that

lim τ1
ψ(n)(ω) = c1 and lim τ2

ψ(n)(ω) = c2.

Let 0 < ε < (c2 − c1)/3 and n0 be such that for all m ≥ n0, |τ1
ψ(m)(ω) − c1| < ε and

|τ2
ψ(m)(ω) − c2| < ε. Let t0 ∈ [c1 + (c2 − c1)/3, c2 − (c2 − c1)/3]. For all m ≥ n0, t0 ∈

[τ1
ψ(m)(ω), τ2

ψ(m)(ω)] and so

|Xt0(ω)−Xc1(ω)| ≤Mψ(m)(ω) + cε1/2−γ ,
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with 0 < γ < 1/2. So we obtain that t→ Xt(ω) is constant on [c1+(c2−c1)/3, c2−(c2−c1)/3].
Finally, on [0, T ], with positive probability, t→ Xt is constant on some interval with non empty
interior which is absurd since σt is positive. We deduce that S is equal to zero almost surely,
which concludes.

Let

Nαn,t = sup{i : τi,n ∈ [0, t]} =
m∑
k=1

(N (a)
αn,t,k

+N
(c)
αn,t,k

)

denote the number of transactions with price change on [0, t]. We have the following lemma.

Lemma 4. For any 0 < t ≤ T , the sequence (α2
nNαn,t)n≥0 is tight.

Proof. There exists a positive constant c such that

cα2
nNαn,t ≤

Nαn,t∑
i=1

(Xτi,n −Xτi−1,n)2.

Moreover,

Nαn,t∑
i=1

(Xτi,n −Xτi−1,n)2 = −(Xt −XNαn,t)
2 +

∑
i≥1

(Xτi,n∧t −Xτi−1,n∧t)
2.

Using Lemma 3 together with Theorem I.4.47 in [21], we easily obtain that

Nαn,t∑
i=1

(Xτi,n −Xτi−1,n)2 P→
∫ t

0
X2
sσ

2
sds,

which concludes.

We deduce the following result.

Lemma 5. We have

RVαn,t =
Nαn,t∑
i=1

(Xτi,n −Xτi−1,n

Xτi−1,n

)2 u.c.p.→
∫ t

0
σ2
sds.

Proof. Using the same method as in the preceding lemma, we get

Nαn,t∑
i=1

(
log(Xτi,n)− log(Xτi−1,n)

)2 u.c.p.→
∫ t

0
σ2
sds.

Then, using the fact that |Xτi,n − Xτi−1,n | ≤ cαn together with Assumption 3, it is easily
shown that

Nαn,t∑
i=1

((
log(Xτi,n)− log(Xτi−1,n)

)2 − (Xτi,n −Xτi−1,n

Xτi−1,n

)2) u.c.p.→ 0.
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We now state a result on the number of continuations of the process.

Lemma 6. For 1 ≤ k ≤ m,

α2
nN

(c)
α,t,k

u.c.p.→ k − 1 + 2η
2k − 1 + 2η

∫ t

0
pk(χu)ϕ(χu)σ2

uX
2
udu.

Proof. We have

α2
nN

(c)
αn,t,k

= α2
n

Nαn,t∑
i=1

I{|Xτi,n−Xτi−1,n |=αk} = α2
n

∑
νi,n≤〈X〉t

I{|Bνi,n−Bνi−1,n |=αnk}.

Note that Nαn,t = N ′n,〈X〉t with N ′n,u = sup{i : νi,n ≤ u}. By Assumption 3, 〈X〉t ≤ d, where
d is a positive constant. In the same way as in Lemma 4, we easily show that the sequence
(α2

nN
′
n,d)n≥0 is tight. So, it is clear that

α4
n

∑
νi,n≤〈X〉t

EEnT (νi−1,n)
[I{|Bνi,n−Bνi−1,n |=αnk}]

P→ 0

and
α4
n sup
i≥1

EEnT (νi−1,n)
[I{|Bνi,n−Bνi−1,n |=αnk}Iνi,n≤〈X〉t ]

P→ 0.

Lemma 1 gives that α2
nN

(c)
αn,t,k

and

α2
n

∑
νi,n≤〈X〉t

EEnT (νi−1,n)
[I{|Bνi,n−Bνi−1,n |=αnk}]

have the same limit in probability. Using Corollary 1, we get that the preceding quantity is
equal to

α2
n

∑
νi,n≤〈X〉t

EEnT (νi−1,n)

[
EFT (νi−1,n)

[I{|Bνi,n−Bνi−1,n |=αnk}]
]

= α2
n

∑
νi,n≤〈X〉t

EEnT (νi−1,n)

[
I{Li−1,n=k}

k − 1 + 2η
2k − 1 + 2η

]
= α2

n

k − 1 + 2η
2k − 1 + 2η

∑
νi,n≤〈X〉t

pk(χT (νi−1,n)).

By Corollary 1,

(6) EEnT (νi−1,n)
[∆νi−1,n] = α2

n

m∑
k=1

pk(χT (νi−1,n))k(k − 1 + 2η)

and

α2
n

∑
νi≤〈X〉t

EEnT (νi−1,n)
[pk(χT (νi−1,n))] =

∑
νi,n≤〈X〉t

EEnT (νi−1,n)
[pk(χT (νi−1,n))ϕ(χT (νi−1,n))∆νi,n].
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Using that EEnT (νi−1,n)
[(∆νi,n)2] ≤ cα4

n, Lemma 1 gives that

α2
n

∑
νi,n≤〈X〉t

pk(χT (νi−1,n))

and ∑
νi,n≤〈X〉t

pk(χT (νi−1,n))ϕ(χT (νi−1,n))∆νi,n

have the same limit in probability. The function

s→ pk(χT (s))ϕ(χT (s))

being almost surely continuous, using Lemma 3, we get

∑
νi,n≤〈X〉t

pk(χT (νi−1,n))ϕ(χT (νi−1,n))∆νi,n
a.s.→

∫ 〈X〉t
0

pk(χT (s))ϕ(χT (s))ds

and the result follows.

The same method as in the preceding lemma gives the following result for the number of
alternations.

Lemma 7. For 1 ≤ k ≤ m,

α2
nN

(a)
αn,t,k

u.c.p.→ k

2k − 1 + 2η

∫ t

0
pk(χu)ϕ(χu)σ2

uX
2
udu.

We now give the proof of Theorem 1.

Proof. Let

R̂V αn,t =
Nαn,t∑
i=1

(X̂t
τi,n − X̂

t
τi−1,n

X̂t
τi−1,n

)2
where

X̂t
τi,n = Xτi,nm(η̂αn,t, Pti,n)

with

m(η̂αn,t, Pti,n) = 1−
αn(η − η̂αn,t)sign(Pti,n − Pti−1,n)

Pti,n − αn(1
2 − η)sign(Pti,n − Pti−1,n)

.

First note that by Lemma 6 and 7, η̂αn,t
u.c.p.→ η. Then it is easily shown that

Nαn,t∑
i=1

((
log(X̂t

τi,n)− log(X̂t
τi−1,n

)
)2 − (X̂t

τi,n − X̂
t
τi−1,n

X̂t
τi−1,n

)2) u.c.p.→ 0.

We have

R̂V αn,t = R̃V αn,t+
Nαn,t∑
i=1

(
log(

m(η̂αn,t, Pti,n)
m(η̂αn,t, Pti−1,n)

)
)2+2

Nαn,t∑
i=1

(
log(Xτi,n)−log(Xτi−1,n)

)(
log(

m(η̂αn,t, Pti,n)
m(η̂αn,t, Pti−1,n)

)
)
,
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where, using Lemma 5, R̃V αn,t
u.c.p.→

∫ t

0
σ2
sds. We now prove that the other terms tend to 0.

We have ∣∣ log
( m(η̂αn,t, Pti,n)
m(η̂αn,t, Pti−1,n)

)∣∣ ≤ cαn|η − η̂αn,t|
and

Nαn,t∑
i=1

(
log(

m(η̂αn,t, Pti,n)
m(η̂αn,t, Pti−1,n)

)
)2 ≤ cα2

nNαn,t(η − η̂αn,t)2.

Moreover
| log(Xτi,n)− log(Xτi−1,n)| ≤ cαn

and

∣∣Nαn,t∑
i=1

(
log(Xτi,n)− log(Xτi−1,n)

)(
log(

m(η̂αn,t, Pti,n)
m(η̂αn,t, Pti−1,n)

)
)∣∣ ≤ cα2

nNαn,t|η − η̂αn,t|.

By Lemma 4, the result follows.

4.4. Proof of Theorem 2. Let θ denote the reciprocal of the process f introduced before
Theorem 2. Consider the time-changed process (Zu)u≥0 defined by

Zu = Xθu .

This process is adapted to the filtration (Hu)u≥0 with Hu = Fθu . Moreover it is a Hu−local
martingale such that 〈Z〉u = 〈X〉θu , see for example [28] p.181.

For each n, we define the filtration Hn by

Hnu = Enτbα−2
n uc,n

.

Moreover, we define the process Z(n) by

Z(n)u = Zfτ
bα−2
n uc,n

.

Lemma 8. The process Z(n) is a Hn martingale such that

〈Z(n)〉u
P→ 〈Z〉u.

Proof. We have

Z(n)u =
bα−2
n uc∑
i=1

(Z(n)α2
ni
− Z(n)α2

n(i−1)) + x0.

Since by Corollary 1

EHn
α2
n(i−1)

[Z(n)α2
ni
− Z(n)α2

n(i−1)] = EEnT (νi−1,n)
[Bνi,n −Bνi−1,n ] = 0,
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20 C.Y. ROBERT AND M. ROSENBAUM

we easily obtain that Z(n) is a Hn martingale such that

〈Z(n)〉u =
bα−2
n uc∑
i=1

EHn
α2
n(i−1)

[(Z(n)α2
ni
− Z(n)α2

n(i−1))
2] =

bα−2
n uc∑
i=1

EEnT (νi−1,n)
[(Bνi,n −Bνi−1,n)2].

By Corollary 1, we get

〈Z(n)〉u =
∑

νi,n≤〈X〉τ
bα−2
n uc

EEnT (νi−1,n)
[∆νi,n].

This can be written T1 + T2 + T3 with

T1 =
∑

νi,n≤〈X〉θu

EEnT (νi−1,n)
[∆νi,n]

T2 =
∑

〈X〉τ
bα−2
n uc

≤νi,n<〈X〉θu

EEnT (νi−1,n)
[∆νi,n]

T3 =
∑

〈X〉θu<νi,n≤〈X〉τbα−2
n uc

EEnT (νi−1,n)
[∆νi,n].

By Lemma 1, T1 tends to 〈X〉θu = 〈Z〉u in probability. By Corollary 1, we easily have

T2 ≤ cα2
n|Nαn,θu − bα−2

n uc|.

By Lemma 6 and Lemma 7, we have α2
nNαn,t

u.c.p→ ft. Consequently, T2 tends to 0 in probability.
The same result holds for T3.

Let Mb denote the set of all bounded martingales on (Ω,H,P). Let N ∈Mb and N(n) be
defined by

N(n)u = Nfτ
bα−2
n uc,n

.

Using the sampling theorem, we get that N(n) is a Hn martingale. Let (N1, . . . , Nm) be a
finite family with elements inMb. Using that fτbα−2

n uc,n

u.c.p→ u together with Theorem VI.6.37

b) in [21], we obtain the following convergence for the Skorohod topology on Dm+1[0,∞)(
Z(n), N1(n), . . . , Nm(n)

) P→ (Z,N1, . . . , Nm).

Hence we have Property IX.7.1 in [21].
Let us now introduce the (2m+ 1)-dimensional process K(n) defined by

K(n)u =
bα−2
n uc∑
i=1

Ki(n)

where Ki(n) =
(
Ki,1(n), . . . ,Ki,2m+1(n)

)
and for 1 ≤ k ≤ m,

Ki,1(n) = α−1
n

((Bνi,n −Bνi−1,n)2

B2
νi−1,n∧〈X〉T

−$i,nEEnT (νi−1,n)

[(Bνi,n −Bνi−1,n)2

B2
νi−1,n∧〈X〉T

])
Ki,2k(n) = α−1

n

(
α2
nI{|Bνi,n−Bνi−1,n |=αnk} −$i,nα

2
nEEnT (νi−1,n)

[
I{|Bνi,n−Bνi−1,n |=αnk}

])
Ki,2k+1(n) = α−1

n

(
α2
nI{|Bνi,n−Bνi−1,n |=αn(2η+k−1)} −$i,nα

2
nEEnT (νi−1,n)

[
I{|Bνi,n−Bνi−1,n |=αn(2η+k−1)}

])
,
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with
$i,n =

∆νi−1,n

EEnT (νi−1,n)
[∆νi−1,n]

.

The random variables Ki,j(n) are Hnα2
ni

measurable and so K(n) is a Hn martingale. To
establish the stable convergence of this process, we will apply Theorem IX.7.3 in [21].

Let N ∈Mb and orthogonal to Z and N(n) being such that N(n)u = Nfτ
bα−2
n uc,n

.

Lemma 9. We have
〈K(n), N(n)〉u

P→ 0.

Proof. Since N(n) is a Hn martingale, we have that 〈K1(n), N(n)〉u is equal to

α−1
n

bα−2
n uc∑
i=1

1
Z(n)2α2

n(i−1)∧α2
nNαn,T

EHn
α2
n(i−1)

[
(Z(n)α2

ni
− Z(n)α2

n(i−1))
2(N(n)α2

ni
−N(n)α2

n(i−1))
]

− α−1
n

bα−2
n uc∑
i=1

EHn
α2
n(i−1)

[(Z(n)α2
ni
− Z(n)α2

n(i−1))2

Z(n)2α2
n(i−1)∧α2

nNαn,T

]
EHn

α2
n(i−1)

[
$i,n(N(n)α2

ni
−N(n)α2

n(i−1))
]
.

Let 1 ≤ k ≤ m. We define τ (k)
i,n the same way as τi,n by Equation (1) except that Li,n is

replaced by k. Let ν(k)
i,n = 〈X〉

τ
(k)
i,n

, Bu = Bu+νi−1,n − Bνi−1,n , FB be the filtration generated

by B and γu = EFBu [(B
ν
(k)
i,n

− Bνi−1,n)2]. Since γ is a martingale with respect to FB, by the

martingale representation theorem, we have for u ≥ 0

γu = γ0 +
∫ u

0
vsdBs = γ0 +

∫ f〈X〉−1
u+νi−1,n

fτi−1,n

v〈X〉θs−νi−1,n
dZs,

for some predictable process v. We set vu = 0 for u < 0 and

γ̃u = γ0 +
∫ u

0
v〈X〉θs−νi−1,n

dZs.

Hence, for given n, since Z is a H martingale, γ̃u is a bounded H martingale, orthogonal to
N . Remarking that γ̃f

τ
(k)
i,n

= (B
ν
(k)
i,n

− Bνi−1,n)2 and using the fact that γ̃N is a martingale

together with the sampling theorem, we get

EHn
α2
n(i−1)

[
(Z(n)α2

ni
− Z(n)α2

n(i−1))
2I{Li−1,n=k}(N(n)α2

ni
−N(n)α2

n(i−1))
]

= EHn
α2
n(i−1)

[
I{Li−1,n=k}EFτi−1,n

[γ̃f
τ
(k)
i,n

(Nf
τ
(k)
i,n

−Nfτi−1,n
)]
]

= 0.

Using the same kind of computations for the second term, we get 〈K1(n), N(n)〉u = 0. In the
same way, we obtain that for 1 ≤ k ≤ m, 〈K2k(n), N(n)〉u = 〈K2k+1(n), N(n)〉u = 0.

Lemma 10. For ε > 0 and 1 ≤ j ≤ 2m+ 1, we have

bα−2
n uc∑
i=1

EHn
α2
n(i−1)

[Ki,j(n)2I{|Ki,j(n)|>ε}]
P→ 0.
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Proof. It is clear that
|Ki,j(n)| ≤ cαn(1 +$i,n).

Using the fact that for p ∈ N, EHn
α2
n(i−1)

[$p
i,n] ≤ cp together with Cauchy-Schwarz and Markov

inequalities, we get
EHn

α2
n(i−1)

[Ki,j(n)2I{|Ki,j(n)>ε}] ≤ cε−1α5/2
n .

An obvious application of the Burkholder-Davis-Gundy inequality leads to the following
lemma.

Lemma 11. Let h be a differentiable real function with bounded derivative. For p > 0, we
have

E[|h(χT (νi,n))− h(χT (νi−1,n))|p] ≤ cpαpn.

Lemma 12. For 1 ≤ k ≤ m, we have

〈K1(n), Z(n)〉u
P→ 0, 〈K2k(n), Z(n)〉u

P→ 0, 〈K2k+1(n), Z(n)〉u
P→ 0.

Proof. i) 〈K1(n), Z(n)〉u is equal to A1
n +A2

n with

A1
n = α−1

n

bα−2
n uc∑
i=1

1
B2
νi−1,n∧〈X〉T

EEnT (νi−1,n)

[
(Bνi,n −Bνi−1,n)3

]
and

A2
n = −α−1

n

bα−2
n uc∑
i=1

EEnT (νi−1,n)

[
(Bνi,n −Bνi−1,n)2

]
B2
νi−1,n∧〈X〉T

EEnT (νi−1,n)

[
$i,n(Bνi,n −Bνi−1,n)

]
.

The term A1
n can be written

α2
n

bα−2
n uc∑
i=1

IBνi−1,n∈U
− IBνi−1,n∈D

B2
νi−1,n∧〈X〉T

m∑
k=1

akpk(χT (νi−1,n)),

with D = ∪dk, U = ∪uk and ak = −k(1− 2η)(k − 1 + 2η).
Using Lemma 11, we get that it is also equal to R1

n +R2
n with

R1
n = α2

n

bα−2
n uc∑
i=1

IBνi−1,n∈U
− IBνi−1,n∈D

B2
νi−2,n∧〈X〉T

m∑
k=1

akpk(χT (νi−2,n))

and E[|R2
n|] ≤ cαn. Let

R3
n,i−1 =

IBνi−1,n∈U
− IBνi−1,n∈D

B2
νi−2,n∧〈X〉T

∑m
k=1 akpk(χT (νi−2,n))

2
∑m
k=1 bkpk(χT (νi−2,n))

,
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with bk = k(2k − 1 + 2η)−1 and

R3
n = α2

n

bα−2
n uc∑
i=1

(
R3
n,i−1 − EEnT (νi−2,n)

[R3
n,i−1]

)
.

From Lemma 9 in [13], the last term tends to zero in probability. We have

EEnT (νi−2,n)
[R3

n,i−1] =

(
1− 2

∑m
k=1 bkpk(χT (νi−2,n))

)(
IBνi−2,n∈U

− IBνi−2,n∈D

)
B2
νi−2,n∧〈X〉T

∑m
k=1 akpk(χT (νi−2,n))

2
∑m
k=1 bkpk(χT (νi−2,n))

.

This is also equal to S1
n,i−1 + S2

n,i−1 with

S1
n,i−1 =

(
1− 2

∑m
k=1 bkpk(χT (νi−3,n))

)(
IBνi−2,n∈U

− IBνi−2,n∈D

)
B2
νi−3,n∧〈X〉T

∑m
k=1 akpk(χT (νi−3,n))

2
∑m
k=1 bkpk(χT (νi−3,n))

and E[|S2
n,i−1|] ≤ cαn. Finally, R3

n = R1
n + R4

n with R4
n ≤ cαn and so R1

n tends to zero in
probability. We now turn to A2

n. By Corollary 1, EHn
α2
n(i−1)

[∆νi−1,n(Bνi,n − Bνi−1,n)] is equal
to

(IBνi−1,n∈U
−IBνi−1,n∈D

)
( m∑
k=1

pk(χT (νi−1,n))α
3
n

k(k − 1 + 2η)
3(2k − 1 + 2η)

(
k(3k−2+4η)−(k−1+2η)(3k−1+2η)

))
.

By the same arguments as for A1
n, A2

n tends to zero in probability.
ii) We have 〈K2k(n), Z(n)〉u = B2k,1

n +B2k,2
n , with

B2k,1
n = α−1

n

bα−2
n uc∑
i=1

EEnT (νi−1,n)

[
α2
nI{|Bνi,n−Bνi−1,n |=αnk}(Bνi,n −Bνi−1,n)

]
and

B2k,2
n = −α−1

n

bα−2
n uc∑
i=1

EEnT (νi−1,n)
[α2
nI{|Bνi,n−Bνi−1,n |=αnk}]EEnT (νi−1,n)

[
$i,n(Bνi,n −Bνi−1,n)

]
.

Moreover,

Bνi,n −Bνi−1,n = (IBνi−1,n∈U
− IBνi−1,n∈D

)
m∑
j=1

I{Li−1,n=j}
(
αnjI{|Bνi,n−Bνi−1,n |=αnj} − αn(2η + j − 1)I{|Bνi,n−Bνi−1,n |=αn(2η+j−1)}

)
.

Hence we get

B2k
n = α2

nk
k − 1 + 2η
2k − 1 + 2η

bα−2
n uc∑
i=1

(IBνi−1,n∈U
− IBνi−1,n∈D

)pk(χT (νi−1,n)).

Using the same trick as in i) we obtain 〈K2k(n), Z(n)〉u
P→ 0. In the same way, we get the

last result.
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Let

ψ
(c)
k (χT (v)) =

(k − 1 + 2η)pk(χT (v))
(2k − 1 + 2η)j(j − 1 + 2η)

, ψ
(a)
k (χT (v)) =

kpk(χT (v))
(2k − 1 + 2η)j(j − 1 + 2η)

and

mk,1 = k − 1 + 2η, mk,2 = 2k − 1 + 2η, mk,3 = mk,1/mk,2,

mk,4 = k(3k − 2 + 4η), mk,5 = k(3k − 1 + 2η),

mk,6 = (k2(3k − 2 + 4η) + (k − 1 + 2η)2(3k − 1 + 2η)),

v(χu) =
1
6

m∑
j=1

j(j − 1 + 2η)pj(χu)(5j2 − 5j + 1 + 4η2 + 10jη − 4η).

Lemma 13. For 1 ≤ l, l′ ≤ 2m+ 1,

bα−2
n uc∑
i=1

EHn
α2
n(i−1)

[Ki,l(n)Ki,l′(n)] P→ cl,l′,u,

with

c1,1,u =
2
3

∫ 〈X〉θu
0

m∑
k=1

kmk,1(k − 2η + (k − 1 + 2η)2)pk(χT (v))X
−4
T (v∧〈X〉T )ϕ(χT (v))dv,

for 1 ≤ k ≤ m,

c1,2k,u = k2
∫ 〈X〉θu
0

pk(χT (v))X
−2
T (v∧〈X〉T )ϕ(χT (v))dv −

k

3
mk,3mk,4

∫ 〈X〉θu
0

pk(χT (v))X
−2
T (v∧〈X〉T )ϕ(χT (v))dv

−k
3
mk,3mk,6

∫ 〈X〉θu
0

pk(χT (v))ψ
(c)
k (χT (v))X

−2
T (v∧〈X〉T )ϕ(χT (v))dv+

∫ 〈X〉θu
0

ψ
(c)
k (χT (v))X

−2
T (v∧〈X〉T )v(χT (v))ϕ(χT (v))dv,

for 1 ≤ k ≤ m,

c1,2k+1,u = m2
k,1

∫ 〈X〉θu
0

pk(χT (v))X
−2
T (v∧〈X〉T )ϕ(χT (v))dv−

k

3
mk,3mk,5

∫ 〈X〉θu
0

pk(χT (v))X
−2
T (v∧〈X〉T )ϕ(χT (v))dv

−k
3
mk,3mk,6

∫ 〈X〉θu
0

pk(χT (v))ψ
(a)
k (χT (v))X̃

−2
T (v)ϕ(χT (v))dv+

∫ 〈X〉θu
0

ψ
(a)
k (χT (v))X

−2
T (v∧〈X〉T )v(χT (v))ϕ(χT (v))dv,

for 1 ≤ k, k′ ≤ m,

c2k,2k′,u = mk,3Ik=k′
∫ 〈X〉θu
0

pk(χT (v))ϕ(χT (v))dv −
k

3
mk,3mk,4

∫ 〈X〉θu
0

ψ
(c)
k′ (χT (v))pk(χT (v))ϕ(χT (v))dv

− k′

3
mk′,3mk′,4

∫ 〈X〉θu
0

ψ
(c)
k (χT (v))pk′(χT (v))ϕ(χT (v))dv +

∫ 〈X〉θu
0

ψ
(c)
k (χT (v))ψ

(c)
k′ (χT (v))v(χT (v))ϕ(χT (v))dv,

for 1 ≤ k, k′ ≤ m,

c2k+1,2k′+1,u = km−1
k,2Ik=k′

∫ 〈X〉θu
0

pk(χT (v))ϕ(χT (v))dv −
k

3
mk,3mk,5

∫ 〈X〉θu
0

ψ
(a)
k′ (χT (v))pk(χT (v))ϕ(χT (v))dv

− k
′

3
mk′,3mk′,5

∫ 〈X〉θu
0

ψ
(a)
k (χT (v))pk′(χT (v))ϕ(χT (v))dv+

∫ 〈X〉θu
0

ψ
(a)
k (χT (v))ψ

(a)
k′ (χT (v))v(χT (v))ϕ(χT (v))dv,
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for 1 ≤ k, k′ ≤ m,

c2k,2k′+1,u = −k
3
mk,3mk,4

∫ 〈X〉θu
0

ψ
(a)
k′ (χT (v))pk(χT (v))ϕ(χT (v))dv

− k′

3
mk′,3mk′,5

∫ 〈X〉θu
0

ψ
(c)
k (χT (v))pk′(χT (v))ϕ(χT (v))dv +

∫ 〈X〉θu
0

ψ
(c)
k (χT (v))ψ

(a)
k′ (χT (v))v(χT (v))ϕ(χT (v))dv.

Proof. For simplicity we just prove the convergence to c1,1,u. The other results are proved
the same way. Using Corollary 1, we have that

bα−2
n uc∑
i=1

EHn
α2
n(i−1)

[Ki,1(n)2]

is equal to

1
B4
νi−1,n∧〈X〉T

EEnT (νi−1,n)
[
(
(Bνi,n−Bνi−1,n)2−∆νi−1,n

)2] =
2

3B4
νi−1,n∧〈X〉T

EEnT (νi−1,n)
[(Bνi,n−Bνi−1,n)4].

Using the same arguments as in the end of the proof of Lemma 12, the result follows.

Lemma 14. Let cu = (ci,j,u)i∈[1:2m+1], j∈[1:2m+1]. We have K(n)u
H−Ls→ Ku in D2m+1[0,∞)

with
Ku =

∫ u

0
bsdWs,

where bs is a matrix with dimension (2m+ 1)× (2m+ 1) such that∫ u

0
bsb
>
s ds = cu.

Proof. The result follows from Lemma 8 to Lemma 13 together with Theorem IX.7.3 in
[21].

Lemma 15. Let K̃t = Kft and K̃(n)t = K(n)α2
nNαn,t

. We have K̃(n)t
I−Ls→ K̃t in

D2m+1[0,∞).

Proof. We first use the obvious fact that the process (K(n)u, Zu, χθu) converges H stably
towards the process (Ku, Zu, χθu) in D2m+3[0,∞). Since α2

nNαn,t
u.c.p→ ft, the fact that the sta-

ble convergence in law implies the convergence in law together with the composition mapping
theorem (see Theorem 13.2.2 in [33]) and the Skorohod representation theorem, the preceding
result gives

(K̃(n)t, Zα2
nNαn,t

, χθ
α2
nNαn,t

)→ (K̃t, Xt, χt)

and finally
(K̃(n)t, Xt, χt)→ (K̃t, Xt, χt),

for the weak convergence in D2m+3[0,∞). Then the result follows from the definition of the
stable convergence in law.
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Lemma 16. For 0 ≤ t ≤ T , we have

α−1
n

( ∑
νi,n≤〈X〉t

$i,nEEnT (νi−1,n)

[(Bνi,n −Bνi−1,n)2

B2
νi−1,n∧〈X〉T

]
−
∫ t

0
σ2
udu

)
u.c.p.→ 0,

α−1
n

( ∑
νi,n≤〈X〉t

$i,nα
2
nEEnT (νi−1,n)

[
I{|Bνi,n−Bνi−1,n |=αnk}

]
− k − 1 + 2η

2k − 1 + 2η

∫ t

0
pk(χu)ϕ(χu)σ2

uX
2
udu

)
u.c.p.→ 0,

α−1
n

( ∑
νi,n≤〈X〉t

$i,nα
2
nEEnT (νi−1,n)

[
I{|Bνi,n−Bνi−1,n |=αn(2η+k−1)}

]
− k

2k − 1 + 2η

∫ t

0
pk(χu)ϕ(χu)σ2

uX
2
udu

)
u.c.p.→ 0.

Proof. The first quantity is equal to

α−1
n

( ∑
νi,n≤〈X〉t

∆νi−1,n

B2
νi−1,n

−
∫ 〈X〉t
0

B−2
s ds

)
=α−1

n

( ∑
νi,n≤〈X〉t

{∆νi−1,n

B2
νi−1,n

−
∫ νi,n

νi−1,n

B−2
s ds

})
+ α−1

n

∫ 〈X〉t
νNαn,t,n

B−2
s ds.

The result easily follows. The second quantity is equal to

α−1
n

k − 1 + 2η
2k − 1 + 2η

( ∑
νi,n≤〈X〉t

α2
n∆νi−1,npk(χT (νi−1,n))ϕ(χT (νi−1,n))−

∫ 〈X〉t
0

pk(χT (v))ϕ(χT (v))dv
)
.

The result is obtained using Lemma 11. We get the result for the last term the same way.

We have the following lemma.

Lemma 17. Let gt be the 2× (2m+ 1) matrix defined by gt = (∇1, (ft)−1∇2)> and

V n
t = (RVαn,t − 〈logX〉t, η̂αn,t − η).

We have
α−1
n V n

t
I−Ls→ gt

∫ t

0
bfsdWfs , in D2[0,∞).

Proof. The result follows from Lemma 15 and Lemma 16 together with the Delta method
and Proposition V.1.5 in [28].

We now give the proof of Theorem 2.

Proof. Using the same method as in the proof of Lemma 5, we can show that

α−1
n

Nαn,t∑
i=1

(
X̂t
τi,n − X̂

t
τi−1,n

X̂t
τi−1,n

)2

has the same limit as

α−1
n

Nαn,t∑
i=1

(
log(X̂t

τi,n)− log(X̂t
τi−1,n

)
)2
.
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This quantity is equal to

α−1
n

Nαn,t∑
i=1

(
log(Xτi,n)− log(Xτi−1,n)

)2
+ α−1

n

Nαn,t∑
i=1

(
log(1− αn(η − η̂αn,t)sign(Pti − Pti−1)

Xτi,n

)− log(1−
αn(η − η̂αn,t)sign(Pti−1,n − Pti−2,n)

Xτi−1,n

)
)2

+ 2α−1
n

Nαn,t∑
i=1

(
log(Xτi,n)− log(Xτi−1,n)

)(
log(1−

αn(η − η̂αn,t)sign(Pti,n − Pti−1,n)
Xτi,n

)
)

− 2α−1
n

Nαn,t∑
i=1

(
log(Xτi,n)− log(Xτi−1,n)

)(
log(1−

αn(η − η̂αn,t)sign(Pti−1,n − Pti−2,n)
Xτi−1,n

)
)
.

Obvious computations give that the second term tends to zero. For the first term, from Lemma
17, we get

α−1
n

(Nαn,t∑
i=1

(
log(Xτi,n)− log(Xτi−1,n)

)2 − 〈logX〉t
) I−Ls→ ∇>1

∫ t

0
bfsdWfs .

The sum of the last two terms is equal to

(
α−1
n (η̂αn,t−η)

)
αn

Nαn,t∑
i=1

(log(Xτi,n)− log(Xτi−1,n))
Xτi−1,n

(
Xτi−1,n

Xτi,n

sign(Xτi,n−Xτi−1,n)−sign(Xτi−1,n−Xτi−2,n))+Rn,

with Rn tending to zero. The term

αn

Nαn,t∑
i=1

(
log(Xτi,n)− log(Xτi−1,n)

)
Xτi−1,n

(Xτi−1,n

Xτi,n

sign(Xτi,n −Xτi−1,n)− sign(Xτi−1,n −Xτi−2,n)
)

has the same limit as

αn

Nαn,t∑
i=1

| log(Xτi,n)− log(Xτi−1,n)|
Xτi−1,n

.

Using the same method as in Lemma 6, this tends to µt. Finally, the last term tends to

µt(ft)−1∇>2
∫ t

0
bfsdWfs .

4.5. Proof of Theorem 3.

Proof. Using the stability of the convergence in probability by absolutely continuous
change of probability, we can set a(j)

t = 0. We consider without loss of generality that for all
n τ

(1)
1,n > τ

(2)
1,n. We define

Nλ
αn,t = sup{i : λ(1)

i,n ∈ [0, t]}
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and

RCVαn,t =
Nλ
αn,t∑
i=2

(
log(X(1)

λ
(1)
i,n

)− log(X(1)

λ
(1)
i−2,n

)
)(

log(X(2)

λ
(2)
i,n

)− log(X(2)

λ
(2)
i−1,n

)
)
.

We have

RCVαn,t =
Nλ
αn,t∑
i=2

(
log(X(1)

λ
(2)
i,n

)− log(X(1)

λ
(2)
i−1,n

)
)(

log(X(2)

λ
(2)
i,n

)− log(X(2)

λ
(2)
i−1,n

)
)

+
Nλ
αn,t∑
i=2

(
log(X(1)

λ
(2)
i−1,n

)− log(X(1)

λ
(1)
i−2,n

)
)(

log(X(2)

λ
(2)
i,n

)− log(X(2)

λ
(2)
i−1,n

)
)

+
Nλ
αn,t∑
i=2

(
log(X(1)

λ
(1)
i,n

)− log(X(1)

λ
(2)
i,n

)
(

log(X(2)

λ
(2)
i,n

)− log(X(2)

λ
(2)
i−1,n

)
)
.

By Theorem I.4.47 in [21],

Nλ
αn,t∑
i=2

(
log(X(1)

λ
(2)
i,n

)− log(X(1)

λ
(2)
i−1,n

)
)(

log(X(2)

λ
(2)
i,n

)− log(X(2)

λ
(2)
i−1,n

)
) u.c.p.→ ∫ t

0
ρsσ

(1)
s σ(2)

s ds.

For the second term, we use Lemma 1 and we get that it has the same limit as

Nλ
αn,t∑
i=2

EF
λ
(2)
i−1,n

∧t

[(
log(X(1)

λ
(2)
i−1,n∧t

)− log(X(1)

λ
(1)
i−2,n∧t

)
)(

log(X(2)

λ
(2)
i,n∧t

)− log(X(2)

λ
(2)
i−1,n∧t

)
)]

= 0.

We now treat the last term. Let ε > 0. This term is equal to

bα−(2+ε)
n c∑
i=2

(
log(X(1)

λ
(1)
i,n∧t

)− log(X(1)

λ
(2)
i,n∧t

)
)(

log(X(2)

λ
(2)
i,n∧t

)− log(X(2)

λ
(2)
i−1,n∧t

)
)

+
∑

{i:bα−(2+ε)
n c≤i≤Nλ

αn,t
}

(
log(X(1)

λ
(1)
i,n

)− log(X(1)

λ
(2)
i,n

)
)(

log(X(2)

λ
(2)
i,n

)− log(X(2)

λ
(2)
i−1,n

)
)
.

Since EF
λ
(2)
i,n
∧t

[
log(X(1)

λ
(1)
i,n∧t

)− log(X(1)

λ
(2)
i,n∧t

)
]

= 0, we have

E
[( bα−(2+ε)

n c∑
i=2

(
log(X(1)

λ
(1)
i,n∧t

)− log(X(1)

λ
(2)
i,n∧t

)
)(

log(X(2)

λ
(2)
i,n∧t

)− log(X(2)

λ
(2)
i−1,n∧t

)
))2]

=
bα−(2+ε)
n c∑
i=2

E
[(

log(X(1)

λ
(1)
i,n∧t

)− log(X(1)

λ
(2)
i,n∧t

)
)2( log(X(2)

λ
(2)
i,n∧t

)− log(X(2)

λ
(2)
i−1,n∧t

)
)2]

≤ cα2
n

bα−(2+ε)
n c∑
i=2

E
[(

log(X(2)

λ
(2)
i,n∧t

)− log(X(2)

λ
(2)
i−1,n∧t

)
)2]

≤ cα2
nE
[ bα−(2+ε)

n c∑
i=2

∫ λ
(2)
i,n∧t

λ
(2)
i−1,n∧t

(σ(2)
s )2ds

]
.
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Hence the first part of the last term tends to zero in probability. Moreover, the second part
is smaller than c(N (1)

αn,t − α
−(2+ε)
n )+. Using the fact that Nλ

αn,t ≤ N
(1)
αn,t +N

(2)
αn,t together with

the tightness of the sequences α2
nN

(1)
αn,t and α2

nN
(2)
αn,t, we finally obtain that this second part

tends to zero and so
RCVαn,t

u.c.p.→
∫ t

0
ρsσ

(1)
s σ(2)

s ds.

Moreover, using the same method as in the proof of Theorem 1, one can show that the
difference R̂CV αn,t −RCVαn,t tends to zero. The result follows.

5. Simulation study. In this section, we compare our estimators to other estimation
procedures through simulations of the price process in the model with uncertainty zones. We
consider the following model

dXt = σtXtdWt, x0 = 100, t ∈ [0, 1],

where σt = 0.01×
(
1+0.5×sin(2πt+π/4)

)
, which gives a classical U-shape intraday volatility

curve. We fix α = 0.05, η = 0.05 and, for simplicity, we assume that, for i ≥ 1, Li = 1 and
ti = τi.

Our simulation accuracy is equivalent to 0.1 second. More precisely, the interval [0,1] cor-
responds to one trading day of eight hours and the discretization mesh is (3600 × 8 × 10)−1

on [0, 1].
We compute the following estimators of the integrated volatility on [0, 1] over 1000 simula-

tions:
- the realized volatility estimator,
- the kernel estimator of [6] with a Tukey-Hanning kernel,
- the pure rounding estimator presented in [31],
- the two scales estimator from [36] (ZMA for short),
- the Garman-Klass estimator, see [12] for details,
- our new integrated volatility estimator (RR for short).
The first three estimators are computed for different dyadic subsampling frequencies (from

0 to 10, that is from 1 second to 1024 seconds) whereas the ZMA estimator is computed for
subsampling frequencies of 1, 2, 4 and 8 seconds (the results for other frequencies being not
relevant). The results are given in Figure 2. We provide the averages of the estimated values
together with 90% confidence intervals. The true value of the integrated volatility on [0, 1]
(1.125× 10−4) is given by the grey line.
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Fig 2. Estimators in the case of a deterministic integrated volatility. The circles represent the average of the
estimators and the red lines give the confidence intervals.

The realized volatility becomes reasonable from a sampling frequency of two minutes
whereas the kernel estimator is quite sharp when considering a sampling frequency of about
sixteen seconds. This agrees with the simulation results about the noise that can be found in
[29]. Indeed, at a first glance, in this specific setting of parameters, the assumptions required
in [6] seem relatively fulfilled for a sampling frequency of sixteen seconds. The pure rounding
estimator is almost unbiased for all frequencies and its confidence intervals are tight. The two
scales estimator seems convenient only for a two seconds sampling whereas the Garman-Klass
estimator is unbiased but leads to a large confidence interval. Finally, our estimator, which
does not necessitate the choice of a sampling frequency, appears unbiased and very sharp.

We now consider the same model for two assets, where the two Brownian motions are
correlated with a constant correlation coefficient ρt equal to 0.4. Thus the integrated co-
volatility on [0, 1] is deterministic and equal to 4.5× 10−5. We compute the Hayashi-Yoshida
estimator and our new estimator. The results over 1000 simulations are given in Table 1.

Statistics HY R̂CV

Mean 8.55× 10−5 4.48× 10−5

Standard Deviation 7.8× 10−6 5.7× 10−6

Table 1
Monte Carlo comparison between the Hayashi-Yoshida estimator and the new estimator.

The fact of correcting the last traded price values and considering the new stopping times
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considerably improves the Hayashi-Yoshida estimator. Indeed, whereas in average this esti-
mator is twice larger than the true value, our estimator is almost unbiased and its variance is
reasonable.

6. Conclusion. This paper studies volatility estimation issues in a model with endoge-
nous microstructure noise.

- We work in the model with uncertainty zones. It is chosen for two reasons : first, the
underlying efficient price is a semi-martingale and second, it reproduces the main stylized
facts of transaction prices, durations and microstructure noise and its results on real data are
very promising, see [29]. From a practical point of view, contrary to many other models, the
computation of estimators does not require any choice of a sampling frequency and there is
no ambiguity about the price to use.

- Our statistical procedures are based on the idea of approximating the value of the effi-
cient price at some random times. Because of these random, endogenous times, usual semi-
martingale convergence theorems do not apply in our framework and so a new methodology
is proposed.

- Our estimator of the integrated volatility is naturally given by a realized volatility com-
puted on the approximated values of the efficient price. It is proved to satisfy a central limit
theorem. The proof of the theorem uses a time change method together with stability prop-
erties of the weak convergence in the Skorokhod space. This idea is not specific to our model
and can probably be used to treat other inference issues where times are endogenous.

- When two assets are observed, a slightly modified version of the Hayashi-Yoshida estimator
computed on the approximated values of the efficient price gives us a consistent estimator
of the integrated co-volatility. Thus, we have built an estimator for the co-volatility in the
presence of asynchronicity of the data and microstructure noise.

- Simulations show that our results are very satisfying and that, in this quite realistic model,
our method outperforms several other estimators.
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